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Phase transitions in stochastic self-organizing maps
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~Received 25 April 1997!

We describe the development of neighborhood-preserving stochastic maps in terms of a probabilistic clus-
tering problem. Starting from a cost function for central clustering that incorporates distortions from channel
noise, we derive a soft topographic vector quantization algorithm~STVQ! which is based on the maximum
entropy principle, and which maximizes the corresponding likelihood in an expectation-maximization fashion.
Among other algorithms, a probabilistic version of Kohonen’s self-organizing map~SOM! is derived from
STVQ as a computationally efficient approximation of theE step. The foundation of STVQ in statistical
physics motivates a deterministic annealing scheme in the temperature parameterb, and leads to a robust
minimization algorithm of the clustering cost function. In particular, this scheme offers an alternative to the
common stepwise shrinking of the neighborhood width in the SOM, and makes it possible to use its neigh-
borhood function solely to encode the desired neighborhood relations between the clusters. The annealing inb,
which corresponds to a stepwise refinement of the resolution of representation in data space, leads to the
splitting of an existing cluster representation during the ‘‘cooling’’ process. We describe this phase transition
in terms of the covariance matrixC of the data and the transition matrixH of the channel noise, and calculate
the critical temperatures and modes as functions of the eigenvalues and eigenvectors ofC andH. The analysis
is extended to the phenomenon of the automatic selection of feature dimensions in dimension-reducing maps,
thus leading to a ‘‘batch’’ alternative to the Fokker-Planck formalism for on-line learning. The results provide
insights into the relation between the width of the neighborhood and the temperature parameterb: It is shown
that the phase transition which leads to the representation of the excess dimensions can be triggered not only
by a change in the statistics of the input data but also by an increase ofb, which corresponds to a decrease in
noise level. The theoretical results are validated by numerical methods. In particular, a quantity equivalent to
the heat capacity in thermodynamics is introduced to visualize the properties of the annealing process.
@S1063-651X~97!01110-0#
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I. INTRODUCTION

The tractability of pattern recognition and signal proce
ing tasks depends strongly on the representation of the
evant input data. Usually, the input signals are high dim
sional vectors which are hard to visualize and which—
reasons of complexity—cannot be processed directly. Th
fore it is desirable to find some mapping of the high dime
sional input space to some lower dimensional space in a
which captures the essential spatial relations of the dat
faithfully as possible, and which at the same time perform
kind of lossy data compression. Algorithms of this kind a
generally known as ‘‘topology preserving vector quantizer
@1,2#.

The self-organizing map~SOM!, first introduced by Ko-
honen@3,4#, is an example of such an algorithm. The ma
ping is achieved by a heuristic on-line learning rule th
leads to a correspondence between local regions in in
space and neurons in a usually two-dimensional array, s
that the spatial relations between data points are reflecte
the spatial relations of the corresponding neurons in the
ray. The SOM has been applied to a wide range of techn
tasks~see Refs.@5,6# for a review!, and has become one o
the standard modeling approaches for neural developme
the computational neuroscience community~see Refs.@7,8#
for a review!, for which it was originally intended. Also
there exists a great amount of literature that deals with
ferent theoretical aspects and applications of the SOM@9,5#.
561063-651X/97/56~4!/3876~15!/$10.00
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Another approach to the problem of lossy data compr
sion is called clustering or vector quantization. The idea is
encode a set of data points by a reduced set of refere
vectors in such a way as to minimize a given cost funct
based on a suitable distortion measure. The easiest and
well-known paradigm isk-means clustering@10#, which uses
an on-line learning rule and applies the squared Euclid
distance as a distortion measure to update its reference
tors. Recently, more elaborate schemes have been sugge
which take into account the complexity of the codebook
the robustness of the representation@1#.

Rose, Gurewitz, and Fox@11# introduced deterministic
annealing as a robust minimization procedure for the clus
ing cost function leading to a set of optimal reference v
tors. Deterministic annealing was originally derived fro
statistical physics~cf. Refs. @12,13#! and is in this context
based on fuzzy assignments of data points to clusters.
annealing process helps to avoid local minima in the poss
highly nonconvex cost function during the optimization pr
cedure. After deriving a Gibbs distribution related to the c
function via the principle of maximum entropy, the uniqu
maximum of the likelihood at high temperatures is det
mined and tracked through lower temperatures. Depend
on the structure of the cost function, this procedure lead
good local minima or even to the global minimum of the co
function.

Luttrell @14–16# established a connection between t
self-organizing map and noisy vector quantization.
3876 © 1997 The American Physical Society
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56 3877PHASE TRANSITIONS IN STOCHASTIC SELF- . . .
choosing a distortion measure for vector quantization t
incorporates robustness with respect to noise-indu
changes of assignments, he derived an algorithm which
named the topographic vector quantization~TVQ!. He
showed that the SOM can be viewed as an efficient appr
mation to a gradient descent on the TVQ cost function. Si
the TVQ has a known cost function it is thus possible to fi
efficient optimization procedures~see, e.g., Ref.@2#!. Those
procedures can then—via the approximation—be applied
develop robust variants of the SOM. Additionally, the ana
sis of stationary states and convergence properties of
SOM @17,18# is facilitated by considering the link to th
TVQ @19#.

In this paper we apply the idea of deterministic anneal
to the optimization of the TVQ cost function, and develop
algorithm for noisy vector quantization which we call so
topographic vector quantizer~STVQ!. The STVQ can be
used for the creation of topology-preserving maps by app
priately choosing the transition probabilities of the assum
channel noise, because the channel noise breaks the pe
tation symmetry of the clusters and thus provides a dista
measure on the space of clusters similar to the neighborh
matrix in the SOM. The probabilistic formulation enables
to apply an annealing scheme in the temperature instead
the range of the neighborhood function, which can thus
chosen freely to represent desired neighborhood relation
the clusters~e.g., random graphs in Ref.@20#!. From an op-
timization point of view, the annealing process is viewed
a means to avoid local minima of the clustering cost fu
tion.

Our analysis also shows that the annealing leads to
splitting of existing cluster representations in data spa
This process is identified as a phase transition, and is c
acterized in relation to the channel noise and the input d

In Sec. II we derive a set of self-consistent equations
the cluster centers based on fuzzy assignments of data p
to clusters using the principle of maximum entropy. The
fixed-point equations are solved by an expectati
maximization~EM!-type algorithm@21# at a given tempera
ture. In order to avoid local minima of the cost function w
then employ an annealing procedure in the temperature
rameter. Via an approximation in theE step of the STVQ,
this leads to a deterministic annealing procedure for
SOM, as well. In Sec. III we analyze phase transitions t
occur during the annealing process in the temperature.
calculate the critical temperatures and modes for the split
of existing clusters in terms of eigenvalues and eigenvec
of the covariance matrix of the data and the transition mat
The same technique is then applied in Sec. IV to the p
nomenon of the automatic selection of feature dimensio
which was first analyzed for the on-line SOM by Ritter a
Schulten@17# using a Fokker-Planck approach and later a
plied by Obermayer, Blasdel, and Schulten to pattern form
tion in neural systems@18#. The technique yields expression
for critical variance of the data and critical wavelength of t
unstable mode in terms of temperature and transition ma
Results are compared to the zero temperature case fo
SOM, which had been obtained earlier@17#. In Sec. V nu-
merical results are presented that demonstrate the behav
the algorithm and confirm the theoretical results of the p
vious sections. We numerically explore the transitions wh
t
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the cluster representation undergoes during the annea
and introduce a quantity similar to the heat capacity in th
modynamics to better visualize the annealing process.

II. SOFT TOPOGRAPHIC VECTOR QUANTIZATION

A. Derivation of the STVQ algorithm

In clustering data points which are in some sense sim
are grouped for the purpose of data interpretation as we
data compression. Given a setX of data points xi
PRd, i 51, . . . ,D, and a setC of clustersCr , r51, . . . ,N,
the aim of any clustering algorithm is to assign each d
point xi to a clusterCr so as to minimize a given assignme
cost functionE. If we introduce binary assignment variable
mi r, which take the value one if data pointxi is member of
clusterCr and zero otherwise, the cost function can be w
ten as

E~$mi r%, parameters!5(
i

(
r

mi rEr~ i ,parameters!,

~1!

whereEr( i , parameters! denotes the cost associated with a
signing data pointxi to clusterCr , and ‘‘parameters’’ param-
etrize the assignment costsEr . In central clustering
Er( i , parameters! is taken to be the squared Euclidean d
tance Er( i ,wr)5ixi2wri2 between a data pointxi and a
parameter vectorwrPRd, which for central clustering is
called cluster center, and which serves as the represent
in data space for the data points assigned to the clusterCr .
The desired property of the assignment, that each data p
is assigned to exactly one cluster, requires the constrain

(
r

mi r51, ; i . ~2!

The quantityE($mi r%,parameters) takes its minimum wit
respect to the parameters when an optimal set of locations
the cluster centers, i.e., an optimal representation for e
group of data points in data space, is achieved.

Following an idea by Luttrell@16# we consider the case
that the cluster indicesr , which label the clusters, form a
compressed encoding of the data for the purpose of trans
sion via a noisy channel~see Fig. 1!. The distortion caused
by the channel noise is modeled by a matrixH of transition
probabilitieshrs for the noise induced change of the assig
ment of a data pointxi from clusterCr to clusterCs. After
transmission the received indexs is decoded, i.e., mappe
back to data space, using its cluster centerws. Averaging the
squared Euclidean distanceixi2wsi2 over all possible tran-
sitions thus yields what Luttrell calls the topographic Eucl
ean distortion

Er~ i ,$wr%!5 1
2 (

s
hrsixi2wsi2, ~3!

where the factor 1/2 is introduced for computational con
nience. Sincehrs is the probability for the transitionr→s, the
following constraint must hold:
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(
s

hrs51, ;r . ~4!

The transition probabilities are closely related to the e
ments of the neighborhood matrix in the SOM@3,4#. The
cost function~1! with distortion measure~3! takes its mini-
mum, when a robust representation of the data with res
to the channel noise is achieved. Since the assignment
data pointxi to clusterCr changes to clusterCs with probabil-
ity hrs the corresponding representatives or cluster centerwr
andws should be located close to each other in data spac
hrs is large in order to keep the assignment cost~1! low. In
this way the noise-induced transitions lead—via Eq.~3!—to
a coupling between different clusters. The transition pr
ability can be interpreted as a measure for ‘‘closeness’’
tween clusters: Clusters are ‘‘close’’ if the transition pro
abilities are high. In the special case that the transit
probabilities are monotonically related to a metric they d
fine a neighborhood in the sense of the SOM.

Now, given the cost functionE5E($mi r̂%,$wr%) as a
quality criterion for the representation̂$mi r%,$wr%‰ of the
data, we determine a probability distributio
P5P($mi r%,$wr%) over the space of all representations
the spirit of Bayesian model evaluation. In order to simpl
notation here and in the following, bounds on sums and
tegrals are omitted if sums overi run over allD data points
in X, sums overr run over allN clusters inC, and integrals
are taken from2` to `. Integrals over vectors are to be rea
as multiple integrals over the vectors’ components. Since
do not make any assumptions about the distribution of d
points we apply the principle of maximum entropy@22#. This
amounts to choosing the probability distribution which ma
mizes the entropy,

FIG. 1. Cartoon of a generic data communication problem. In
dataxi are grouped and the groups~clusters! are labeled with indi-
cesr ~encoding stage!. The indices are then transmitted via a noi
channel which is characterized by a set of transition probabili
hrs for the noise process. As soon as an indexs is received at the
decoder the data is reconstructed via a vectorws ~decoding stage!
which represents all data points assigned to clusters during encod-
ing. In the following, we will measure the combined error due
clustering and channel noise via the squared Euclidean dist
between the original data pointxi and the cluster centerws . The
final assignment cost is then given by an average over all transit
r→s.
-

ct
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S5 (
$mi r%

E •••E P lnP dw1•••dwN , ~5!

under the constraint of a given average cost

U5 (
$mi r%

E •••E EP dw1•••dwN ~6!

and yields the Gibbs distribution as the probability distrib
tion over the space of representations,

P~$mi r%,$wr%!5
1

Z
exp„2b E~$mi r%,$wr%!…. ~7!

The Lagrange multiplierb is associated with the averag
costU, and is interpreted as an inverse temperature.Z is the
normalization constant or partition function and is given b

Z5 (
$mi r%

E •••E exp„2b E~$mi r%,$wr%!…dw1•••dwN .

~8!

Since we are primarily interested in determining the m
probable set of cluster centers so as to generalize fro
given set of training samples, the marginal probability

P~$wr%!5
1

Z (
$mi r%

exp„2b E~$mi r%,$wr%!… ~9!

is considered, where the summation runs over all sets$mi r%
of assignments which obey relation~2!. Using the identity

(
$mi r%

exp„2b E~$mi r%,$wr%!…5)
i

(
r

exp„2bEr~ i ,$wr%!…,

~10!

one obtains, for the log likelihood,

lnP~$wr%!5(
i

ln(
r

exp„2b Er~ i ,$wr%!…2 lnZ. ~11!

Maximizing Eq.~11! with respect to$wr% at a given value of
the temperature parameterb yields conditions

wr5

(
i

xi(
s

hrsP~ i PCs!

(
i

(
s

hrsP~ i PCs!

, ;r , ~12!

for the cluster centers$wr%, where P~i PCs) is the assign-
ment probability of data pointxi to clusterCs and is given by

P~ i PCs!5^mis&5

expS 2
b

2(
t

hstixi2wti2D
(

u
expS 2

b

2(
t

hutixi2wti2D .

~13!

^mis& is the expectation value of the binary assignment va
ablemis for a given set$wr% with respect to the probability
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56 3879PHASE TRANSITIONS IN STOCHASTIC SELF- . . .
distribution ~7!. For a givenb, Eqs. ~12! and ~13! can be
solved by fixed-point iteration. We will call this optimizatio
algorithm the STVQ.

Equations~12! and~13! can also be derived from a stati
tical physics framework~cf. Yuille et al. @12,13# for an ex-
panded treatment!. Starting from the Hamiltonian given in
~1! and~3!, we first consider the probability distribution ove
the $mi r% for finite temperature and fixed$wr%. This yields

Pm~$mi r%u$wr%!5
1

Zm
exp„2bE~$mi r%u$wr%!…, ~14!

with the $wr%-dependent partition function

Zm~$wr%!5 (
$mi r%

exp„2bE~$mi r%u$wr%!…. ~15!

Using Eq.~10!, the partition functionZm can be evaluated
exactly, which yields an expression for the free energy

Fm5
1

b
ln Zm . ~16!

In statistical physics one is interested in expectation val
rather than maximum likelihood estimates. The expecta
value ofws can be expressed as

^ws&5
1

ZE •••E ws exp„2b Fm~$wr%!…dw1•••dwN ,

~17!

where the degeneracy of solutions due to symmetries of
data space and the transition probabilities have to be ta
into account by integrating only over one fundamental c
Expression~17! can be evaluated using the saddle-point
proximation, i.e., by expandingFm($wr%) to second order
around its minimum, which yields Eqs.~12! and~13! for the
saddle-point conditions. The assignment probabilit
P( i PCs) are equal to the mean fields^mis& of the binary
assignment variables for a given set of cluster centers$wr%.

From an algorithmic point of view, iteratively solvin
Eqs. ~12! and ~13! comprises an expectation-maximizatio
algorithm@21#. TheE step~13! consists of the calculation o
the assignment probabilitiesP( i PCs) for all data pointsxi
and clustersCs. Then in theM step~12! of the algorithm the
positions of the cluster centerswr are recalculated using th
new assignment probabilitiesP( i PCs) from the E step. In
Ref. @21# it is shown that the EM algorithm converges mon
tonically to a local maximum of the log likelihood~11! under
mild conditions that are valid for our case. However, we
interested in finding the global minimum ofE given by Eq.
~1!. Since the global minimum ofE coincides with the globa
maximum of the log likelihood forb→`, we can apply a
deterministic annealing scheme inb. At low b, the local
minima of E are washed out in the log likelihood, whos
global maximum can then be found using the EM algorith
The maximum is then tracked through higher values ob
until it coincides at sufficiently highb with a minimum ofE.
Convergence to a~one-change optimal! local minimum was
established by Puzicha, Hofmann, and Buhmann@23#, who
also pointed out that convergence to the global minim
should not be expected in the general case. Geman and
s
n

e
en
l.
-

s

e

.

e-

man@24# gave an annealing schedule for simulated annea
according to whichb(t)<c ln(11t), wheret is the number
of the annealing step andc is a constant independent oft,
and proved the convergence to a global minimum in dis
bution. This result hints at how the parameterb is to be
handled in deterministic annealing. In practical applicatio
however, a linear or exponential annealing scheme fob
could be allowed to save computation time, possibly at
cost of precision of the results. In analogy to Gaussian m
ture models the parameterb can also be interpreted as a
inverse variance in data space, thus determining the res
tion of the clustering. Consequently, the annealing proc
corresponds to a stepwise refinement of the representatio
the data, and it is possible to determine the resolution of
final representation by terminating the annealing schedul
an appropriate value ofb. This is particularly appropriate to
avoid an overfitting of the data in the presence of noise.

B. Derivatives of the STVQ algorithm

To put the above-derived algorithm~STVQ! into a famil-
iar context we consider certain limits and approximatio
which lead to a family of topographic clustering algorithm
The limiting caseb→` in the assignment probabilities~13!
yields a batch version of the TVQ discussed by Luttrell@16#
and Heskes and Kappen@19#. The TVQ is a winner-take-all
algorithm for which Eqs.~12! and ~13! become

wr5

(
i

xi(
s

hrsPTVQ~ i PCs!

(
i

(
s

hrsPTVQ~ i PCs!

~18!

and

PTVQ~ i PCs!5dst ,

t5arg min
u

(
v

huvixi2wvi2. ~19!

The approximationhrs→d rs in the assignment probabili
ties ~13! leads to a fuzzy version of the SOM which we ca
soft-SOM~SSOM!. This modification provides an importan
computational simplification because the omission of o
convolution withhrs saves a considerable amount of comp
tation time. Equations~12! and ~13! then become

wr5

(
i

xi(
s

hrsPSSOM~ i PCs!

(
i

(
s

hrsPSSOM~ i PCs!

~20!

and

PSSOM~ i PCs!5

expS 2
b

2
ixi2wsi2D

(
t

expS 2
b

2
ixi2wti2D . ~21!
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It has been noted by Luttrell@16#, however, that Eqs.~20!
and ~21!, which correspond to a nearest-neighbor encod
do not in general minimize the cost function~1! with Eq. ~3!
@14#. An exact minimization is only achieved, when th
channel noise is taken into account not only in the upd
rule but also in the determination of the winner as in E
~12! and ~13! for the STVQ.

If one combines the limiting caseb→` with the approxi-
mation hrs→d rs in Eq. ~13!, one obtains a batch version o
the SOM@25#, for which Kohonen’s original algorithm@3,4#
is a stochastic approximation@26#. Equations~12! and ~13!
then become

wr5

(
i

xi(
s

hrsPSOM~ i PCs!

(
i

(
s

hrsPSOM~ i PCs!

~22!

and

PSOM~ i PCs!5dst ,

t5arg min
u

ixi2wui2. ~23!

Finally, substitutinghrs→d rs in both Eqs.~12! and ~13!
yields the soft clustering procedure proposed in Ref.@11#,
whose limitb→` recovers the well-knownk-means cluster-
ing ~HC! @10#. Figure 2 summarizes the family of topo
graphic clustering algorithms.

III. ANALYSIS OF THE INITIAL PHASE TRANSITION

In order to understand the annealing process in the t
perature parameterb it is instructive to look at how the
representation of the data changes withb. From Refs.@11#
and@1# it is known that the cluster centers split with increa
ing b, and that the number of relevant clusters for a reso
tion given byb is determined from the number of cluste
that have split up to that point. In the STVQ, however, t
permutation symmetry of the cluster centers is broken
couplings between clusters are introduced by the transi
matrix H. This changes stationary states and the ‘‘splittin
behavior of the cluster centers.

For b50, which corresponds to infinite temperature, e
ery data pointxi is assigned to every clusterCr with equal
probability P0( i PCr)51/N, whereN is the number of clus-
ter centers. In this case the cluster centers are given by

FIG. 2. The STVQ family of clustering algorithms.
,

te
.

-

-
-

d
n

’

-

wr
05

1

D(
i

xi , ;r ; ~24!

that is, all the cluster centers are located at the center of m
of the data. Without loss of generality we setwr

050, ; r . A
Taylor expansion of the right-hand side of Eq.~12! around
$wr

0%, to first order inwt, yields

wr5F (
i

xi(
s

hrsP~ i PCs!

(
i

(
s

hrsP~ i PCs!
G

$wr
0%

1(
t F ]

]wt

(
i

xi(
s

hrsP~ i PCs!

(
i

(
s

hrsP~ i PCs!
G

$wr
0%

wt1O~wt
2!.

~25!

Under the assumption thatH is symmetrical, i.e.,
hrs5hsr , ;r ,s, this expression can be evaluated using
relation

]P~ i PCs!

]wt
5b ~xi2wt!P~ i PCs!S hst2(

u
htuP~ i PCu! D ,

~26!

and the linearized fixed-point equations become

wr5b C(
t

grtwt . ~27!

HereC 5 ~1/D! ( ixixi
T is the covariance matrix of the data

and

grt 5(
s

hrsS hst2
1

ND ~28!

are the elements of a matrixG which acts on the cluste
indices. The system of equations~27! decouples under trans
formation to the eigenbasis of the covariance matrixC in
data space, and to the eigenbasis of the matrixG in cluster
space. The former transformation is also known as princ
component analysis~PCA! @27#. Denoting the transformed
cluster centers by wˆ

mk8 , wherem and k designate the com
ponents in the new bases of data space and cluster spac
the prime and hat denote PCA and the transformation to
eigenbasis ofG, Eq. ~27! becomes

ŵmk8 5~b lm
C lk

G!ŵmk8 , ~29!

wherelm
C andlk

G are the eigenvalues for the eigenvectorsvm
C

and vk
G . Equation~29! can only have nonzero solutions fo

b lm
C lk

G51. Hence there is a criticalb* ,

b* 5
1

lmax
C lmax

G
, ~30!
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FIG. 3. The phenomenon of ‘‘dimension re
duction’’ and the automatic selection of featu
dimensions. States of minimal free energy a
shown ~a! before the phase transitio
(sy50.4 d.u.), and ~b! after the transition
(sy51.8 d.u.) for a one-dimensional array o
N5128 cluster centers and a two-dimension
data space. The chain of clusters as well as thx
dimension in data space are subject to perio
boundary conditions. Thex direction is referred
to as the longitudinal dimension, they direction
is called the transversal dimension. The units
the axes are data space units~d.u.!. The dots rep-
resent data points and the filled circles the loc
tionswr of the cluster centers. Those cluster ce
ters whose labels differ by one are connected
lines. The transition probabilitieshrs correspond
to a Gaussian neighborhood function of standa
deviation sh55.0. Parameter value
b51.3 d.u.22 and r510.0 d.u.21 lead to a
critical standard deviationsy* 51.25 d.u. and a
critical modek* 53 for the transition.
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at which the center of mass solution becomes unstable, c
ters split, and a new representation of the data set eme
b* depends on the data via the largest eigenvaluelmax

C of the
covariance matrixC whose eigenvectorvmax

C denotes the di-
rection of maximum variancesmax

2 5lmax
C of the data. Con-

sequently, the split of the clusters occurs along the princ
axis in data space.b* also depends on the transition matr
H via the largest eigenvaluelmax

G of the matrixG. The larg-
est eigenvaluelmax

G indicates which eigenvectorvk
G5vmax

G is
dominant, and therefore determines the direction in clu
space in which the split occurs. Any componentwmr8 of vec-
tor wm8 5(wm18 , . . . ,wmN8 )T can be expressed as a linear co

binationwmr8 5(kŵmk8 vkr
G of componentsvkr

G of eigenvectors
vk

G5(vk1
G , . . . ,vkN

G )T of the matrixG. Thus the developmen
of cluster center componentwmr8 under the linearized fixed
point equation~29! depends on the value of ther th compo-
nent of eigenvectorvmax

G . Given the principal axis in data
space, the eigenvectorvmax

G indicates in which direction
along this axis as well as how far each cluster center mo
relative to the other cluster centers in the linear approxim
tion.

In order to express this result in terms of eigenvectorsvk
H

and eigenvalueslk
H of H, it is observed thatG andH have

the same set of eigenvectors. It follows from Eq.~28! that
vmax

G is identical to the eigenvector ofH which corresponds
to its second largest eigenvaluelk

H , with (lk
H)25lmax

G .
s-
es.

al
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The above results can be extended to the SSOM, whic
based on the fixed-point equations~20! and ~21!. For the
SSOM the matrixG, whose elements are given by Eq.~28!,
must simply be replaced byGSSOMwith elementsgrt

SSOM5hrt
21/N.

IV. ANALYSIS OF THE AUTOMATIC SELECTION
OF FEATURE DIMENSIONS

A similar analysis as above can be carried out with reg
to the phenomenon of the automatic selection of feature
mensions, a term first used by Kohonen@9# in the context of
dimension reduction @28,29#. Let us consider a
d-dimensional data space and ann-dimensional array of
clusters labeled byn-dimensional index vectorsr . The cou-
plings hrs of clusters are defined on this array, and are ty
cally chosen to be a monotonically decreasing function
ir2si . For d.n a simple representation of the input data
achieved, if the data have significant variance only alongn
of the d dimensions. In this case, the vectorswr lie in an
n-dimensional subspace and the excess dimensions are e
tively ignored@see Fig. 3~a!#. If, however, the variance of the
data in the excess dimensions surpasses a critical value
original representation becomes unstable, and the arra
vectorswr folds into the excess dimensions so as to repres
them as well@see Fig. 3~b!#. This phenomenon was studie
in a formal way by employing a Fokker-Planck approxim
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3882 56THORE GRAEPEL, MATTHIAS BURGER, AND KLAUS OBERMAYER
tion for the dynamics of the~zero temperature! SOM on-line
learning algorithm@18,17#. In the following we provide an
analysis for the full STVQ family by investigating the fixed
point equations~12! and~13!, and compare the results to th
limiting case of the SOM.

A. Phase transition in the discrete case

For this purpose, we examine the stability of Eqs.~12!
and ~13! around a known fixed point. Let us consider t
case of an infinite number of data points generated by
underlying probability distributionP(x). The fixed-point
equations then read

wr5

E P~x!x(
s

hrsP~xPCs!dx

E P~x!(
s

hrsP~xPCs!dx
, ;r , ~31!

P~xPCs!5

expS 2
b

2(
t

hstix2wti2D
(

u
expS 2

b

2(
t

hutix2wti2D , ~32!

where cluster indicesr are nown-dimensional index vectors
which lie on an n-dimensional cubic array,rPNn,
r nP$1,2, . . . ,N%. For the following we assume tha
hrs :N3N→@0,1# obey hrs5hir2si . For notational conve-
nience, the data spaceX is split into two subspaces,X5Xi

%X', one for the embedding or longitudinal dimensionsXi

with elementsxi and one for the excess or transversal dim
sionsX' with elementsx'. We also assume the probabilit
distribution P(x) over data spaceX to factorize as
P(x)5P(xi)P(x'), where the probability distribution
P(x') in the transversal dimensions has zero mean,
*P(x')x' dx'50. In the longitudinal dimensions of dat
space we assume the factorizationP(xi)5)nP(xn

i ), with
P(xn

i )51/l for 2 l /2<xn
i < l /2 andP(xn

i )50 otherwise, and
we consider the system in the approximationN→`, l→`
and r:5N/ l finite. Since the variance in the longitudin
data space is effectively infinite, for the fixed point of Eq
~31! and ~32! ~see Appendix A! we obtain

wr
i05r21r and wr

' 050, ;r . ~33!

Equation ~31! can again be expanded to first order inwt
around the fixed point$wr

0%, just as in Eq.~25!. The assign-
ment probabilityP0(xPCs) of a data pointx to a clusterCs in
the fixed-point state~33! depends on the longitudinal com
ponents ofx only and—abusing notation—we can wri
P0(xPCs)5P0(xiPCs). Let us consider the stability of Eq
~33! along the transversal dimensions which determines
critical parameters for the phase transition depicted in Fig
Using

E P~x! x'(
s

hrs P0~xiPCs! dx50 ~34!
n

-

e.

.

e
3.

@see Appendix A, Eq.~A4!#, for the transversal componen
of the cluster centerswr

' in the linear approximation we ob
tain

wr
'5(

t

E P~x!x'(
s

hrsF]P~xPCs!

]wt
G
$wr

0%

dx

E P~x!(
s

hrs P0~xiPCs! dx
wt . ~35!

The denominator of Eq.~35! evaluates toN2n @see Appendix
A, Eq. ~A7!# because on the average over data space for
fixed point no cluster is singled out. Inserting Eq.~26! into
Eq. ~35!, we obtain

wr
'5b C(

t
(

s
hrsS hst2(

u
htu f usDwt

' , ~36!

in which C5*P(x') x' x'T dx' is the covariance matrix o
the transversal dimensions of data space and

f us5rnE P0~xiPCu! P0~xiPCs!dxi ~37!

is essentially the correlation function of the assignment pr
abilities of clustersCu and Cs in the fixed-point state$wr

0%
taken over data space.f us depends onb via the assignmen
probabilities P0(xiPCu). Note that Eq.~36! has the same
form as Eq. ~27! when grt is taken to be
grt 5(shrs(hst2(uhtu f us).

Equation~36! can again be decoupled in data space b
transformation to the eigenbasis ofC. Denoting the compo-
nents of the transformed cluster centers bywmr8' , wherem is
the index with respect to the eigenvectorvm

C with eigenvalue
lm

C , Eq. ~37! reads

wmr8'5b lm
C(

t
(

s
hrsS hst2(

u
htu f usDwmt8' . ~38!

From hrs5hir2si , it follows that f rs5 f ir2si ~see Appendix
B!. Defining the discrete convolution for two lattice func
tions ar and bs to be (a* b) r5(sa(r2s)bs, Eq. ~38! can be
written as

wmr8'5b lm
C
„h* ~h2h* f !* wm8

'
…r . ~39!

Application of the discrete Fourier transform
âk5( rarexp„i(k•r )…, to Eq. ~39! leads to a decoupling o
Eq. ~39! in cluster space as well, and we obtain

ŵmk8'5b lm
C ĥk

2~12 f̂ k!ŵmk8' , ~40!

where we make use of the fact that the modes ink space
depend only on the absolute valuek:5iki due to the isot-
ropy of the neighborhood function, of the data distributio
and of the fixed-point state. Equation~40! can only have
nonzero solutions ifb lm

C ĥk
2
„12 f̂ k(b)…51. Sincelm

C5sm
2 ,

wheresm
2 is the variance along them axis in data space, it is

clear that the cluster centers will automatically select
direction in transversal data space with maximum varia
smax

2 . Thus the eigenvectorvmax
C gives the direction in data
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56 3883PHASE TRANSITIONS IN STOCHASTIC SELF- . . .
space in which the array of cluster centers folds first. T
critical valueb* of the temperature parameter at which th
transition occurs is given implicitly by

smax
2 ĥk*

2 b* „12 f̂ k* ~b* !…2150, ~41!

where the critical modek* is the modek for which Eq.~41!
has a solution with minimalb. For a givenb an explicit
expression for the critical variance (smax* )2 can be obtained

~smax* !25
1

b ĥk*
2

„12 f̂ k* ~b!…
, ~42!

where

k* 5arg max
k

ĥk
2
„12 f̂ k~b!…. ~43!

Very similar results can be derived for the SSOM wh
the approximation to theE step~21! is applied. The resulting
equations are identical to Eqs.~41!, ~42!, and~43! except that
ĥk is not squared andf̂ k(b) has to be calculated using th
approximation given in Eq.~21!.

B. Continuous Gaussian case

To determine values for (smax* )2 and k* for a given b
from Eqs.~42! and~43! analytically, we choosehrs Gaussian
with variancesh

2 on the distanceir2si between clustersr
ands in the array. We also consider a continuum approxim
tion, i.e., all index vectorsr and their associated index ve
tors ink space are real and all functions that were previou
defined onNn are now defined on the corresponding co
tinuum Rn. Under these conditionshrs can be expressed as

hrs→h~ ir2si !5S 1

A2psh
D n

expS 2
ir2si2

2sh
2 D , ~44!

wheren denotes the dimensionality of the cluster array.
serting Eq.~44! into ~37! and replacing sums by integra
yields ~see Appendix C!

f rs→ f ~ ir2si !5F S b

4pr2D 1/2G n

expS 2
b

4 r2
ir2si2D .

~45!

Inserting the Fourier transformations ofhir2si and f ir2si into
Eq. ~43!, we obtain

~k* !25
b

r2
lnS 11

r2

b sh
2D ~46!

from @(]/]k)ĥk
2
„12 f̂ k(b)…#k* 50. Inserting Eq.~46! into Eq.

~42! finally provides the critical variance (smax* )2,

~smax* !25S 1

b
1

sh
2

r2D S 11
r2

bsh
2D bsh

2/r2

~47!

for the modek* .
e

-

y
-

-

An interesting aspect of Eq.~47! is that 1/b and sh
2/r2

appear to play a very similar role. If we interpretb as an
inverse variance of the noise in data space, Eq.~47! is essen-
tially the sum of the variance in data space given by 1/b and
the variancesh

2 of the noise in cluster space scaled to da
space by a factorr22.

The above results are also valid for the caseb→` which
corresponds to the TVQ given in Eqs.~18! and ~19!. From
Eqs.~46! and ~47!, we obtain

lim
b→`

~k* !25
1

sh
2
, ~48!

lim
b→`

~smax* !25
sh

2 e

r2
. ~49!

Equation~48! shows that high values ofsh
2 , i.e., long-ranged

coupling between clusters, suppress high transversal mo
From ~49! it can be seen, that the critical variance (smax* )2 is
proportional to the variance of the neighborhood functionsh

2

scaled to data space by a factorr22. Thus the stability of the
fixed-point state$wr

'0% with respect to the variance of th
data along the transversal direction in data space can be
justed by changingsh

2 .
All the above results carry over to the SOM versions

the algorithm, Eqs.~20!–~23!, if sh
2 is replaced bysh8

2/2 in
Eqs.~46!–~49!, wheresh8

2 denotes the variance of the SOM
neighborhood function. For the wavelengthl* of the critical
mode we obtain (r51)

l* 5
2p

k*
5sh8pA2'4.44sh8 . ~50!

If the critical variance (smax* )2 is expressed in terms of th
half-width s* of a homogeneous data distribution we obta

s* 5sh8A3e/2'2.02sh8 . ~51!

The last two results~50! and ~51! are identical to those pre
sented by Ritter and Schulten@17# for the on-line version of
Kohonen’s SOM algorithm with a Gaussian neighborho
function using the Fokker-Planck approach.

V. NUMERICAL RESULTS

In this section we present numerical results to validate
analytical calculations and to illustrate the deterministic a
nealing scheme. We first apply the STVQ to a toy proble
with a sufficiently simple transition matrixH for which the
eigenvectors and eigenvalues can be easily calculated. T
in order to demonstrate the effects and advantages of
deterministic annealing scheme for the STVQ, we conside
two-dimensional array of clusters in a two-dimensional d
space. Finally, we investigate the behavior of a on
dimensional ‘‘chain’’ of 128 clusters in a two-dimension
data space to validate the results of Sec. IV. Throughout
section components of data vectors will be measured in d
space units, abbreviated ‘‘d.u.’’ The numerical simulatio
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were implemented in ANSI C on Sun Sparc 20 and Sun U
Sparc workstations.

A. Toy problem

We consider a two-dimensional data space with 2000 d
points which were generated by an elongated Gaussian p
ability distribution P(x)5(2p)21uCu21/2exp(2xTC21x/2)
with diagonal covariance matrixC 5 diag ~1.0 d.u.2, 0.04
d.u.2). N 5 3 cluster centers were coupled via a transiti
probability matrixH,

H5
1

11sS 1 s 0

s 12s s

0 s 1
D . ~52!

This choice ofH corresponds to a ‘‘chain’’ of clusters wher
each cluster is linked to its nearest neighbor via the transi
probabilitys/(11s), while second-nearest neighbors are u
coupled because the transition probabilitiesh135h31 vanish.
The magnitude ofs governs the coupling strength and th
normalization factor is included to comply with conditio
~4!.

Figure 4 shows thex coordinates of the positionswr of
the cluster centers in data space as functions of the temp
ture parameterb for the configuration of minimal free en
ergy. At a critical temperatureb* 5 1.21 d.u.22 the cluster
centers split along thex axis, which is the principal axis o
the distribution of data points. In accordance with the eig
vectorvmax

G ,

vmax
G 5~21 d.u., 0 d.u., 1 d.u.!T, ~53!

for the largest eigenvaluelmax
G of the matrixG given in Eq.

~28! two cluster centers move to opposite positions along
principal axis, while one remains at the center. Therefore
topologically correct ordering is already established at

FIG. 4. Plot of thex positionswr
x ~in d.u.! of the cluster centers

as functions ofb ~in d.u.22) for the toy problem withN53 cluster
centers and nearest-neighbor coupling. 2000 data points are ch
randomly and independently from the Gaussian probability dis
bution P(x)5(2p)21uCu21/2exp(2xTC21x/2) with diagonal cova-
riance matrixC 5 diag ~1.0 d.u.2, 0.04 d.u.2). Cluster centers are
initialized at the origin and STVQ is applied for different values
b. The STVQ iterations are stopped, whe
iwr

(t11)2wr
(t)i , 5310210 d.u. for all r . The analytically deter-

mined critical value ofb is given byb* 51.21 d.u.22 for a cou-
pling strength ofs 5 0.1. It corresponds to the trifurcation poin
seen in the plot.
a

ta
b-

n
-

ra-

-

e
a
e

initial phase transition. Figure 5 shows the critical valueb*
of the temperature parameter as a function of the near
neighbor coupling strengths. Error bars indicate the numeri
cal results, which are in agreement with the theoretical p
diction of ~30! ~solid line!. The inset displays the averag
cost ^E&,

^E&5 1
2 (

i
(

r
P~ i PCr !(

s
hrsixi2wsi2, ~54!

as a function ofb for a coupling strength ofs 5 0.1. The
visible drop of the average cost occurs atb 5 1.25 d.u.22.
Note that the transition zone is finite due to finite-size
fects.

B. Annealing of a two-dimensional array of cluster centers

Let us now consider a two-dimensional data space an
set of 838 clusters labeled by two-dimensional index ve
tors r , r n5$1,2, . . . ,8%. The D5838 data points lie
equally spaced on a grid in the unit square. The transit
probabilitieshrs are chosen from a Gaussian function of t
distance between the index vectorsr ands,

hrs5
1

Q r
expS 2

ir2si2

2sh
2 D , ~55!

with

Q r5(
u

expS 2
ir2ui2

2sh
2 D , ~56!

where the normalization constantQ r is needed to satisfy Eq
~4!. This set of transition probabilities corresponds to
‘‘square grid’’ of clusters, and is commonly used in applic
tions of the SOM. Figure 6 shows snapshots of a combi

sen
i-

FIG. 5. Plot of the critical valueb* ~in d.u.22) of the tempera-
ture parameter as a function of the coupling strengths for the
STVQ toy problem of Fig. 4. Error bars denote the numerical
sults. For each value ofs the cluster centers are initialized at th
origin, and b is linearly annealed according tob t115b t10.02
d.u.22, with b050.0 d.u.22 andbfinal56.0 d.u.22, while monitor-
ing ^E&. For low values ofb, the average cost^E& is constant. The
lower error margins denote theb values, for which the first change
in ^E& occurs and the upper error margins denote theb values, for
which the large drop in̂E& occurs. The line shows the theoretic
prediction calculated from Eq.~30! for lmax

C 5sx
251.0 d.u.2 and

lmax
G 51/(11s)2. Inset: Plot of the average cost^E& ~in d.u.2) as a

function of b ~in d.u.22) for a typical example~s 5 0.1!. The
visible drop in^E& occurs atb51.25 d.u.22.
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56 3885PHASE TRANSITIONS IN STOCHASTIC SELF- . . .
FIG. 6. ’’Melting’’ of topological defects.
The plots show snapshots of cluster centers fo
two-dimensional 838 cluster array and a two
dimensional data space using STVQ at differe
temperaturesT ~in d.u.2). Dots indicate cluster
centers with those centers connected by lin
which correspond to pairs of clusters for whic
the transition probabilityhrs is highest. Starting
from a local minimum of the cost function intro
duced by random initialization and preserved
low temperature, as seen in~a!, the temperatureT
is increased exponentially according
Tt1151.01Tt . ~b!–~e! illustrate the correspond
ing ‘‘melting’’ of topological defects.~f! shows
the positions of the cluster centers after ‘‘recoo
ing’’ to T50.01 d.u.2. The Gaussian neighbor
hood function has standard deviationsh50.5,
and the input data consist of 64 data points on
square grid in the unit square.
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‘‘heating’’ and ‘‘cooling’’ experiment which is best de
scribed in terms of the temperatureT:51/b.

For the ‘‘heating’’ process annealing starts at a low te
peratureT50.0002 d.u.2 with randomly initialized cluster
centers and then the temperature is increased according
exponential scheme. Figures 6~a!–6~e! display a series of
five snapshots of cluster centers during ‘‘heating.’’ Defe
of the grid, which indicate a local minimum ofE, are intro-
duced by the random initialization of the cluster centers a
are preserved at low temperatures. AsT is gradually in-
creased, shallow local minima vanish and the grid becom
more and more ordered. Finally, a topologically ordered s
is reached, which corresponds to the global minimum of
free energy. BecauseT governs the resolution of the repre
sentation in data space, rather localized defects melt awa
low temperature, which corresponds to a high resolution
data space, while global twists melt away last.

During ‘‘cooling’’ the temperatureT is decreased startin
from a very high value (T50.1 d.u.2), which corresponds to
a state of the system where all cluster centers are merge
the center of mass of the data distribution. Annealing is p
formed according to the reverse ‘‘heating’’ schedule and
minates atT50.0002 d.u.2, which corresponds to the globa
minimum of the free energy and which is shown in Fig. 6~f!.
Note that an ordered two-dimensional grid of cluster cen
is established at the initial phase transition, and remain
the ordered configuration throughout the ‘‘cooling’’ proces

Figure 7 shows the average cost^E&, a measure for the
quality of the data representation, as a function of the te
peratureT for both annealing experiments from Fig.
‘‘heating’’ and ‘‘cooling.’’

Figure 8 displaysC:5d^E&/dT, the derivative of the av-
erage cost with respect to the temperature, as a functionT
for ‘‘heating.’’ C is equivalent to the heat capacity in the
modynamics, and can be interpreted as a measure for
progress made in the quality of data representation
change in temperature during annealing.C(T) exhibits pro-
nounced peaks at temperatures which correspond to
‘‘steps’’ in ^E& during the annealing at which rearrang
ments of the cluster centers occur. This behavior is an
gous to that of physical systems that undergo phase tra
-

an
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tions, and reflects in our case a qualitative change in
assignment cost triggered by a small quantitative chang
T. The ‘‘heat capacity’’C(T) may also serve to determine
reasonable annealing schedule in the temperature param
because it indicates critical points during the annealing.

C. Automatic selection of feature dimensions
for a chain of clusters

Finally, we consider a data set of 2000 data points dra
from a homogeneous probability distribution defined on
two-dimensional rectangular data space of lengthl x512.8

FIG. 7. Semilogarithmic plot of the average assignment cost^E&
~in d.u.2) as a function of temperatureT ~in d.u.2) for the cluster
array of Fig. 6. The upper curve shows the development of^E& for
the exponential ‘‘heating’’ schedule fromT50.0002 to 0.1 d.u.2,
starting from the local minimum of the cost function shown in F
6~a!. The steps in the average cost occur at temperatures w
‘‘twists’’ in the spatial arrangements of cluster centers unfold. T
lower curve shows the average cost^E& for the same exponentia
scheme now applied backwards, in the ‘‘cooling’’ direction fro
T50.1 to 0.0002 d.u.2. During ‘‘cooling,’’ the cluster centers re-
main in a ‘‘topologically ordered’’ grid-shaped arrangement@cf.
Figs. 6~e! and 6~f!#. The normalization constant is
T050.0002 d.u.2; other parameters are as given in Fig. 6.
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3886 56THORE GRAEPEL, MATTHIAS BURGER, AND KLAUS OBERMAYER
d.u. and a variable widthl y52A3 sy , wheresy
2 is the vari-

ance of the probability distribution along they axis in data
space. A set ofN5128 clusters is labeled by indice
r5$1,2, . . . ,N%. The transition probabilitieshrs are chosen
from a Gaussian function of the distance between indicer
ands,

hrs5
1

Q r
expS 2

„min~ ir2si , N2ir2si !…2

2 sh
2 D , ~57!

with

Q r5(
u

expS 2
„min~ ir2ui , N2ir2ui !…2

2sh
2 D . ~58!

This set of transition probabilities corresponds to a lin
chain of clusters. A one-dimensional chain in a tw
dimensional data space constitutes the simplest nontr
case for which Eq.~47! has been derived.

Since Eq.~47! has been derived for a longitudinal spa
of infinite size and in the continuum limit, periodic bounda
conditions were imposed in the longitudinalx dimension of
data space and on the transition probabilitieshrs . The cluster
centers were initialized according to Eq.~33! @see Fig. 3~a!#
with r510.0 d.u.21. The size of the system to be examin
was important in two aspects. The number of clusters w
chosen as large as computationally feasible in order to
duce finite-size effects on the mode spectrum, as well a
order for the continuum approximation to be valid. The nu
ber of data points was chosen such that local inhomoge
ities would not strongly bias the result, while keeping t
computation time still tractable. Figure 3~b! shows the spatia
distribution of cluster centers after the variancesy

2 has been
gradually increased fromsy

250.0 to 3.24 d.u.2 beyond the
phase transition. The chain folds into the excess dimensioy
in a wavelike shape with a dominant wavelengthl* . This is
well illustrated in Fig. 9, which depicts the power in each
the first five Fourier modes as a function ofsy . At the criti-

FIG. 8. Semilogarithmic plot of the heat capaci
C(T):5d^E&/dT as a function of temperatureT ~in d.u.2) for the
‘‘heating’’ as shown in Figs. 6~a!–6~e! and 7 ~upper curve!. The
temperatures corresponding to the peaked minima of the hea
pacity indicate transition points of the array of cluster centers
observed in Fig. 6. Parameters are as given in Figs. 6 and 7.
r
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cal valuesy* 51.27 d.u. the critical modek* 53 increases
in power and, finally, dominates the spatial arrangemen
the cluster centers.

Figure 10 shows the average cost^E& and its derivative
with respect tosy as functions ofsy for the numerical ex-
periment shown in Fig. 9. At the critical standard deviati
sy* a kink occurs ind^E&/dsy . The position of this kink
was used to obtain the numerical results of Fig. 11, wh

a-
s

FIG. 9. Plot of the squared absolute amplitudesiwk
yi2 ~in d.u.2)

of transversal Fourier modesk as functions of the standard devia
tion sy ~in d.u.! of the data for the chain ofN5128 cluster centers
shown in Fig. 3. Only the five modes with the largest wavelen
are shown. Beyond the phase transition atsy* 51.27, d.u. thek53
mode is selected, and the chain folds into a sine-wave-like cu
Parameters are given byb51.3 d.u.22, r510.0 d.u.21, and
sh55.0. The 2000 data points are distributed uniformly in the d
plane given by @26.4 d.u., 6.4 d.u.#3@2 l y/2,l y/2#, where
l y52A3 sy is the width of the data distribution in they direction.

FIG. 10. Plot of the average cost^E& ~in d.u.2) and its deriva-
tive d^E&/dsy ~in d.u. scaled by an arb. const.! as functions of the
standard deviationsy ~in d.u.! of the data set in they dimension for
the chain ofN5128 cluster centers. The slope of the average c
shows a clear change at the critical value ofsy . Interpolating be-
tweensy at the minimum andsy at the maximum of the derivative
yields the critical valuesy* . The arrow indicates the theoretica
prediction for the critical standard deviationsy* 51.27 d.u. Param-
eters are as given in Fig. 9.
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compares the theoretical values forsy* ~solid line! obtained
from Eq.~47! with those that were obtained from the nume
cal simulations~error bars!. The numerical results are i
good agreement with the theoretical values obtained in S
IV, which justifies the approximations employed in the de
vation of Eq.~47!.

Similar transitions in the data representation occur dur
annealing inT for fixed sy andsh . It can be observed from
Figure 12, which shows the heat capacityC(T) for such a
case, that a stepwise decrease inT leads to a smooth chang
of representation from the initial state~left inset! to a folded
state~right inset! of the chain. This observation is of intere
with regard to neural development in biological syste
@18,30#. InterpretingT51/b as a noise parameter leads to t
idea that the development of cortical maps may be trigge

FIG. 11. Plot of the critical standard deviationsy* ~in d.u.! as a
function of the temperature parameterb ~in d.u.22) for the chain of
N5128 cluster centers. The standard deviationsy of the data set in
the transversaly dimension is linearly increased for fixedb and the
critical valuesy* obtained from the derivative of the average co
as shown in Fig. 10. The upper bound of the error bars is taken f
the position of the minimum, and the lower bound from the posit
of the maximum ofd^E&/dsy . Parameters are as given in Fig. 9
c.
-

g

s

d

by a reduction of neuronal noise rather than—as is
widely accepted view@28#—by a change in the variance o
the input data.

VI. CONCLUSION

Topographic vector quantizers are useful lossy data c
pression algorithms that produce encoding-decoding str
gies which are robust against channel noise. In order to
velop a robust optimization scheme for the TVQ co
function we employed the idea of deterministic anneal
and we derived a fuzzy version of the TVQ algorithm in t
form of an EM scheme. From this algorithm we then o
tained a family of topographic clustering algorithms, amo
them the self-organizing map, as approximations. Since
annealing process is essential to the algorithm, we exam
the behavior of the data representation as a function of t
perature. Critical temperatures and modes of the resul
phase transitions were determined and were found to dep
on the data distribution via its covariance matrix and on
channel noise, or cluster couplings, via its transition mat
A similar analysis was performed with regard to the pheno
enon of the automatic selection of feature dimensions,
analytical results with respect to the critical variance of t
data and critical modes of the folding map were obtained

Our numerical results confirmed the theoretical pred
tions and showed the essential features of the annealing
cess. Since the temperature can be considered as a reso
parameter in data space, the algorithms presented in this
per may prove particularly useful for applications for whic
optimal topographic vector quantization at different scales
desirable. Our results indicate that the first split of the cl
ters is in accordance with the desired structure of the d
representation, as implicitly given by the transition matrixH.
This demonstrates the usefulness of deterministic annea
in clustering and provides the STVQ~and the SSOM! with
many possible applications. From the interpretation of
temperature as a noise parameter for cluster assignmen
follows that phase transitions in topographic clustering c

,
m

y
-

in

e
d

g

are
FIG. 12. Plot of the heat capacit
C(T):5d^E&/dT as a function of the tempera
ture T ~in d.u.2) for the chain ofN5128 cluster
centers. Starting from the initial state of the cha
at high temperature~left inset!, the temperatureT
is reduced in linear steps inb51/T, for fixedsy .
As T is lowered, the heat capacityC increases,
the average cost̂E& is reduced faster, and th
chain is continuously transformed into a folde
configuration of the cluster centers~right inset!.
The vertical arrows indicate the correspondin
temperatures,T51.25 and 0.714 d.u.2 for the left
and right insets, respectively. Parameters
given bysy51.3 d.u. andsh55.0.
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be induced by decreasing the noise level. This finding
implications for neural development in biological system
and leads to the hypothesis that the development of cor
maps may be induced by a decrease of neuronal noise r
than by a change in the statistics of the input signals, a
currently believed.
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APPENDIX A: PROOF OF THE FIXED-POINT PROPERTY

A set of cluster centers$wr
0% qualifies as a fixed point o

Eq. ~31! if it satisfies

wr
05

E P~x!x(
s

hrsP
0~xPCs! dx

E P~x!(
s

hrsP
0~xPCs!dx

, ;r , ~A1!

where

P0~xPCs!5

expS 2
b

2(
t

hstix2wt
0i2D

(
u

expS 2
b

2(
t

hutix2wt
0i2D . ~A2!

Let us first consider the transversal dimensions. Inserting
~33! into Eq. ~A1! yields conditions

wr
'05

E P~x!x'(
s

hrsP
0~xPCs!dx

E P~x!(
s

hrsP
0~xPCs!dx

50', ;r .

~A3!

Using P0(xPCs)5P0(xiPCs) we obtain for the numerato
of Eq. ~A3!
s
,
al
her
is

q.

E P~x!x'(
s

hrsP
0~xiPCs!dx

5E P~xi!(
s

hrsP
0~xiPCs!dxi E P~x'!x'dx'50'

~A4!

because the mean ofP(x') was assumed to be zero. Hen
Eq. ~A3! is satisfied.

For the evaluation of the longitudinal dimensions, w
again insert Eq.~33! into Eq. ~A1!, and obtain conditions

wr
i05

E P~x!xi(
s

hrsP
0~xPCs!dx

E P~x!(
s

hrsP
0~xPCs!dx

5r21r , ;r .

~A5!

Equation~A5! can be written as an average of*Qr(x
i)xidxi

over a probability distributionQr(x
i) given by

Qr~xi!5

P~xi!(
s

hrsP
0~xiPCs!

E P~xi!(
s

hrsP
0~xiPCs!dxi

5NnP~xi!(
s

hrsP
0~xiPCs!, ~A6!

where in the second step the identity

E P~xi!(
s

hrsP
0~xiPCs!dxi5

1

Nn
~A7!

has been used. Equation~A7! can be shown by summing
both sides overr , yielding unity. To demonstrate the validit
of Eq. ~A5! we only need to show thatQr(x

i) is symmetric
with respect towr

i05r21r . SinceP(xi) is homogeneous, this
reduces to showing that(shrsP

0(xiPCs) is symmetric with
respect tor21r . This is equivalent to
(
s

hrsP
0~xiPCs!5(

s
hrsP

0~2r21r2xiPCs!

5(
s

hrs

expS 2
b

2(
t

hstixi2r21~2r2t!i2D
(

u
expS 2

b

2(
t

hutixi2r21~2r2t!i2D . ~A8!

From hrs5hir2si, it follows thathrs5hr (2r2s) . Substitutings→s852r2s and t→t852r2t we can write

(
s

hrsP
0~xiPCs!5(

s8
hrs8

expS 2
b

2(
t

h~2r2s8!tixi2r21~2r2t!i2D
(

u
expS 2

b

2(
t

hutixi2r21~2r2t!i2D
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5(
s8

hrs8

expS 2
b

2(
t8

hs8t8ixi2r21t8i2D
(

u
expS 2

b

2(
t8

hut8ixi2r21t8i2D 5(
s8

hrs8P
0~xiPCs8!.

~A9!

Thus the probability distributionQr(x
i) is symmetric with respect towr

i05r21r and consequently*Qr(x
i) xidxi5r21r .

Hence Eq.~A5! is correct, and Eq.~33! is a fixed point of Eq.~31!.

APPENDIX B: DERIVATION OF THE SYMMETRY PROPERTIES OF THE ASSIGNMENT CORRELATIONS

Here we show thatf rs5 f ir2si follows from hrs5hir2si . Starting from Eq.~37!, we can expressf rs as

f rs5NnE P~xi!

expS 2
b

2(
t

~hir2ti1his2ti!ixi2r21ti2D
F(

u
expS 2

b

2(
t

hiu2tiixi2r21ti2D G2 dxi. ~B1!

Substitutingt→t85A(t2s), whereA is any nonsingular, length-preserving transformation matrix, and usingiAr i5ir i , ;r ,
we obtain

f rs5NnE P~xi!

expS 2
b

2(
t8

~hiA~r2s!2t8i1hi t8i!ixi2r21~A21t81s!i2D
F(u

expS 2
b

2(
t8

hiu2A21t82siixi2r21~A21t81s!i2D G2 dxi. ~B2!

Substitutingxi→xi85A(xi2r21s) andu→u85A(u2s) leads to

f rs5NnE P~A21xi81r21s!

expS 2
b

2(
t8

~hiA~r2s!2t8i1hi t8i!ixi82r21t8i2D
F(u

expS 2
b

2(
t8

hiu2A21t82siixi82r21t8i2D G2 dxi8

5NnE P~A21xi81r21s!

expS 2
b

2(
t8

~hiA~r2s!2t8i1hi t8i!ixi82r21t8i2D
F(

u8
expS 2

b

2(
t8

hiu82t8iixi82r21t8i2D G2 dxi8. ~B3!
s

f
c

ob

by
Comparing Eqs.~B3! and ~B1!, it can be seen thatf rs is a
function ofA(r2s), if P(A21xi1r21s)5P(xi). This is the
case for our particular choiceP(xi)5 l 2n, and, sinceA can
be any length-preserving linear transformation, it follow
that f rs5 f ir2si .

APPENDIX C: EVALUATION
OF THE ASSIGNMENT CORRELATION

FOR GAUSSIAN NEIGHBORHOOD FUNCTIONS

Starting from Eq.~37!, we calculate the approximation o
f rs as given in Eq.~45! for the homogeneous isotropi
Gaussian neighborhood function given in Eq.~44! in the
continuum approximation. Inserting the assignment pr
abilities P0(xiPCr), Eq. ~A2!, for the fixed point~33! into
Eq. ~37! gives
-

f rs5rnE
expS 2

b

2(
t

~hrt 1hst!ixi2wt
i0i2D

F(
u

expS 2
b

2(
t

hutixi2wt
i0i2D G2 dxi.

~C1!

First we evaluate the expression( thrt ixi2wt
i0i2 in the con-

tinuum approximation with sums replaced by integrals
using the property of the fixed pointwt

i 05r21t from ~33!.
This gives

(
t

hrt ixi2wt
i0i2
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'S 1

A2psh
D nE expS 2

ir2ti2

2 sh
2 D ixi2r21ti2 dt

5S 1

A2psh
D nE expS 2

i t8i2

2 sh
2D ixi2r21~ t81r !i2 dt8,

~C2!

for which t→t85t2r . Now the evaluation of the integral i
straightforward, and we obtain

(
t

hrt ixi2wt
i0i2'ixi2wr

i0i21nr22sh
2 . ~C3!

Inserting this into Eq.~C1! and observing that the expressio
exp(2bnr22sh

2) appears as a factor in the numerator a
denominator and thus cancels, we arrive at

f rs'rnE expS 2
b

2
~ ixi2r21r i21ixi2r21si2! D

F(
u

expS 2
b

2
ixi2r21ui2D G2 dxi.

~C4!

The denominator of the integrand in Eq.~C4! is approxi-
mated by

F(
u

expS 2
b

2
ixi2r21ui2D G2
.fi/

um

-

d

'F E expS 2
b

2
ixi2r21ui2DduG2

5S 2pr2

b D n

, ~C5!

and the numerator of the integrand in Eq.~C4! can be rewrit-
ten as

expS 2
b

2
~ ixi2r21r i21ixi2r21si2! D

5expS 2
b

4
~ i2xi2r21~r1s!i21ir21~r2s!i2! D .

~C6!

Inserting Eqs.~C5! and ~C6! into Eq. ~C4!, and using

E expS 2
b

4
i2xi2r21~r1s!i2Ddxi5S p

b D n/2

,

we finally obtain the continuum approximation forf rs ,

f rs' f ~ ir2si !5F S b

4pr2D 1/2G n

expS 2
b

4r2
ir2si2D .

~C7!
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